문서 편집 권한이 없습니다. 다음 이유를 확인해주세요: 요청한 명령은 다음 권한을 가진 사용자에게 제한됩니다: 사용자. 문서의 원본을 보거나 복사할 수 있습니다. [[분류:전파공학]] [[분류:전자기학]][[분류:이론]][[분류:전기와 자기]] =====저항===== 전류의 흐름을 방해한다. ======직렬연결====== 저항을 직렬로 연결할 때 그 등가저항은 각각의 저항을 더한 것과 같다. <math> R = {R}_{1} + {R}_{2} + {R}_{3} </math> ======병렬연결====== 저항을 병렬로 연결할 때 등가저항의 계산은 다음과 같다. <math> \frac{1}{R} = \frac{1}{{R}_{1}} + \frac{1}{{R}_{2}} + \frac{1}{{R}_{3}} </math> =====축전기===== 서로 떨어진 두 도체(극판)으로 이루어져 있다. 전압을 가하면 전하를 축적할 수 있다. 콘덴서라고도 한다. ======전기 용량====== 축전기가 저장하는 전하량(Q)은 양 극판의 퍼텐셜차(V)에 비례한다. <math> Q = CV </math> 이 때 비례상수 C를 전기 용량(혹은 정전 용량) 이라고 하며 단위는 [F], '패럿'으로 읽는다. ======평행판 축전기의 전기 용량====== 양 극판을 평행하게 배치한 축전기를 평행판 축전기라고 한다. 평행판 축전기의 전기 용량은 양 극판의 면적(S)에 비례하고 극판사이의 거리(d)에 반비례한다. <math> C \propto \frac{S}{d} </math> ======직렬연결====== 축전기를 직렬로 연결하면 등가 전기용량은 마치 (평행판)축전기의 양 극판 사이의 거리가 멀어진 것과 같은 효과가 있다. <math> \frac{1}{C} = \frac{1}{{C}_{1}} + \frac{1}{{C}_{2}} + \frac{1}{{C}_{3}} </math> ======병렬연결====== 축전기를 병렬로 연결하면 등가 전기용량은 마치 (평행판)축전기의 양 극판의 면적이 증가한 것과 같은 효과가 있다. <math> C = {C}_{1} + {C}_{2} + {C}_{3} </math> ======용량성 리액턴스====== ======전기적 성질====== # 직류는 딱히 통하지 않는다. 직류 걸어 봤자 적당히 충전되고 끝이다. # 교류의 경우, 주파수가 높을 수록 전류가 잘 통한다. 충전과 방전이 빠르게 이루어지는것으로 생각하면 편하다. #교류의 경우, 전류의 위상은 전압의 위상보다 90도 빠르다. 충전이 최대로 되었을 때 전류의 흐름을 상상하여 보자. =====코일===== =====진공관===== =====반도체 부품===== ======다이오드====== ======트랜지스터====== 전기회로 부품 문서로 돌아갑니다.